
Lesson 6: Introduction to Reversing C++ Binaries
Please Stop Compiling With O3

Leonardo Galli

flagbot (CTF@VIS)

November 7, 2024

Table of Contents

Readying IDA

Theory

Reconstructing Classes

C++ STL
Strings
Vectors
Maps

Demo

Readying IDA

Leonardo Galli November 7, 2024 3 / 31

Useful Plugins

▶ HexRaysPyTools: Extremely useful for quickly creating structures without having to
find every offset that might be a field.

▶ Classy: Makes working with vtables and child classes a lot easier.

Leonardo Galli November 7, 2024 4 / 31

https://github.com/igogo-x86/HexRaysPyTools
https://github.com/RicBent/Classy

Other Settings

▶ Make sure to regularly create a snapshot of your database! (File → Take Database
Snapshot)

▶ Create / Open Classy Database (Classy → Create / Open)

▶ Make sure that compiler options are correct (Options → Compiler)

▶ (Optional) Always show demangled names (Options → Demangled names → Select
Names)

Leonardo Galli November 7, 2024 5 / 31

Theory

Leonardo Galli November 7, 2024 6 / 31

C++ Class Layout in Memory

// Usually stored in the data section.

struct vtable {

void (*func1)();

void (*func2)();

};

struct class {

vtable* vtbl;

int member1;

int member2;

};

Leonardo Galli November 7, 2024 7 / 31

C++ Patterns in a Decompiler

// Initialize new instance of class

__int64 v1 = operator new(sizeof(class));

*v1 = gvtable; // stored somewhere in data.

*(v1 + 4) = 0;

*(v1 + 8) = 0;

// Call a vtable function

(*(void (*)())(*(_QWORD*)v1 + 8))();

Leonardo Galli November 7, 2024 8 / 31

Reconstructing Classes

Leonardo Galli November 7, 2024 9 / 31

Finding vtables and Inheritence Hierarchy

▶ Search for vtable in IDA, you should find something like this:

40FFC0 ; `vtable for'Polygon

40FFC0 _ZTV7Polygon dq 0 ; offset to this

40FFC8 dq offset _ZTI7Polygon ; `typeinfo for'Polygon

40FFD0 vtable dq offset sub_408D40 ; DATA XREF: sub_408D40+11↑o

▶ Go to _ZTI7Polygon and search cross references for “reference to parent’s type

name”, giving you a location close to any child classes:

3D40 ; public Triangle :

3D40 ; public /* offset 0x0 */ Polygon

3D40 ; `typeinfo for'Triangle

Leonardo Galli November 7, 2024 10 / 31

Using Classy

▶ With the information gathered from before, start creating the hierarchy in classy

▶ Then add the correct vtable to every class in classy

▶ If possible, rename the functions correctly and add arguments in classy

▶ Details in demo later!

Leonardo Galli November 7, 2024 11 / 31

Creating Structures for Members

▶ Start with the base class and search for cross references to the vtable

▶ These are locations where class is constructed

▶ Use Structure Builder (right click → Show Structure Builder) to scan variable that
is assigned the vtable

▶ This will automatically try to figure out how the struct layout should look like

▶ Go into any functions that use the newly allocated struct and scan as well

▶ Once satisfied, click finalize, you will be prompted to save the struct

▶ We first need to make some changes!

Leonardo Galli November 7, 2024 12 / 31

Allowing Inheritence

▶ Surround everything except the first vtable field in another struct, named
type members, e.g.:

struct class {

vtable* vtbl;

struct class_members {

int member1;

int member2;

} mbrs;

};

▶ Now you can hit save

Leonardo Galli November 7, 2024 13 / 31

Adding Subclasses

▶ Works very similar to the base class, but you search for cross references to the
vtable of the subclass

▶ Also, you want to have the members struct inherit from the base member struct
and delete any fields that are duplicate, e.g.:

struct subclass {

subvtable* vtbl;

struct subclass_members : class_members {

// int member1; dup

// int member2; dup

int member3;

} mbrs;

};

Leonardo Galli November 7, 2024 14 / 31

Renaming Vtable Functions

▶ Once you created a struct, renaming vtable functions is not as easy anymore.

▶ If you rename them, the created vtable struct will not be automatically renamed as
well!

▶ However, you can just go to the location of the vtable in the data section and press
V

▶ This will “recreate” the vtable fixing up the namings!

Leonardo Galli November 7, 2024 15 / 31

C++ STL

Leonardo Galli November 7, 2024 16 / 31

What is the C++ STL?

▶ Standard Template Library, is the library containing all the C++ types you know
and love: std::string, std::vector, std::map

▶ Two major issues present itself when reversing C++ binaries with STL types:
▶ When compiled with O3 , about 90% of STL code will be inlined
▶ Memory layouts of STL types are different for every major OS and often not very

intuitive

Leonardo Galli November 7, 2024 17 / 31

C++ STL
Strings

Leonardo Galli November 7, 2024 18 / 31

Memory Layout

▶ struct of size 32, if string is less than 16 bytes, everything is stored in the struct

▶ otherwise, allocated on heap, in steps of powers of 2

struct basic_string

{

char *begin_; // actual string data

size_t size_; // actual size

union

{

size_t capacity_; // used if larger than 15 bytes

char sso_buffer[16]; // used if smaller than 16 bytes

};

};

Leonardo Galli November 7, 2024 19 / 31

Inlined Initializers

// v47 is of type basic_string!

v48 = 0LL;

v47 = (__int64)&v49;

LOBYTE(v49) = 0;

// once retyped:

v47.size_ = 0LL;

v47.begin_ = v47.sso_buffer;

v47.sso_buffer[0] = 0;

Leonardo Galli November 7, 2024 20 / 31

Inlined Constructors

// somewhere in the function, you might have this:

std::__throw_logic_error("basic_string::_M_construct null not valid");

// The whole function is probably just a string constructor,

// possible signatures:

string_construct(basic_string*, char* begin, char* end);

string_construct(basic_string*, basic_string*); // Copy

string_construct(basic_string*, char* begin, size_t size);

Leonardo Galli November 7, 2024 21 / 31

C++ STL
Vectors

Leonardo Galli November 7, 2024 22 / 31

Memory Layout
▶ struct of size 24, stores start, end and max pointer
▶ array is allocated on the heap, pointer type is dependent on vector elements

// Stores Point objects

struct vector_point

{

Point* start;

Point* end;

Point* max;

};

// Stores Point pointers, more common

struct vector_point_p

{

Point** start;

Point** end;

Point** max;

};

Leonardo Galli November 7, 2024 23 / 31

Inlined Size

▶ In case of storing pointers, size calculation is straight forward:

size_t size = (vec.end - vec.start) >> 3; // div by 8

▶ In other cases, the division might look more painful:

// assume vec is a vector<char[5]>;

// div by 5

size_t size = ((vec.end - vec.start) * 0xCCCCCCCCCCCCCCCD) >> 2;

Leonardo Galli November 7, 2024 24 / 31

Inlined Methods

// Will often contain something like this:

std::__throw_out_of_range_fmt

// However, might not indicate that the whole function is from STL!

// Common append inlined method:

Point** end = vec->end;

if (end == vec->max) {

// allocate more memory

result = sub_4090C0(&vec->start, end, (Point *)&newp);

} else {

if (end) {

result = newp;

*end = newp;

}

vec->end = end + 1;

}

Leonardo Galli November 7, 2024 25 / 31

C++ STL
Maps

Leonardo Galli November 7, 2024 26 / 31

Memory Layout

▶ Implemented using a red-black tree, so complex memory layout

enum std::_Rb_tree_color : __int32

{

_S_red = 0x0,

_S_black = 0x1,

};

struct std::_Rb_tree_node_base

{

std::_Rb_tree_color _M_color;

struct std::_Rb_tree_node* _M_parent;

struct std::_Rb_tree_node* _M_left;

struct std::_Rb_tree_node* _M_right;

};

Leonardo Galli November 7, 2024 27 / 31

Memory Layout

struct std::map

{

void* allocator; // uninteresting

std::_Rb_tree_node_base _M_header;

size_t _M_node_count;

};

// For a map of type map<string, Point*>

struct std::_Rb_tree_node : std::_Rb_tree_node_base

{

struct string_point_pair

{

basic_string string;

Point* point;

} pair;

};

Leonardo Galli November 7, 2024 28 / 31

Inlined Initalization

v42 = operator new(0x30LL);

*(_DWORD *)(v42 + 8) = 0;

*(_QWORD *)(v42 + 16) = 0LL;

*(_QWORD *)(v42 + 40) = 0LL;

*(_QWORD *)(v42 + 24) = v42 + 8;

*(_QWORD *)(v42 + 32) = v42 + 8;

// After applying type:

map = (std::map*)operator new(0x30LL);

map->_M_t._M_impl._M_header._M_color = 0;

map->_M_t._M_impl._M_header._M_parent = 0LL;

map->_M_t._M_impl._M_node_count = 0LL;

map->_M_t._M_impl._M_header._M_left = &map->_M_t._M_impl._M_header;

map->_M_t._M_impl._M_header._M_right = &map->_M_t._M_impl._M_header;

Leonardo Galli November 7, 2024 29 / 31

Demo

Leonardo Galli November 7, 2024 30 / 31

Demo Time

Leonardo Galli November 7, 2024 31 / 31

	Readying IDA
	Theory
	Reconstructing Classes
	C++ STL
	Strings
	Vectors
	Maps

	Demo

