
Lesson 5: Constraint Solving and Symbolic Execution
We’ll have some fun

Luca Di Bartolomeo Leonardo Galli

flagbot (CTF@VIS)

November 7, 2024

Table of Contents

Constraint Solving
General
Defining Variables
Defining the Domain
Defining Constraints
Solving for Constraints

Angr

Demo

Tips and tricks

Troubleshooting

Other tools

Challenge

Constraint Solving
General

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 3 / 58

Problem: Annyoing Reverse Challenge
▶ Already reversed good amount of challenge

▶ Now you know what conditions every byte of flag must fulfill

char vals[] = {0xe2, 0x37, 0xcf, 0xe4, 0xc2, 0x3a, 0x42, 0x6c, 0x6e, 0x92,

0x5, 0x3a, 0xc5, 0xe6, 0xdf, 0x5c, 0x1f, 0x7, 0xe7, 0xd7, 0xd9, 0x1a,

0xc7, 0xda, 0x63, 0x70, 0x7b, 0xf1, 0xf0, 0xf7, 0xf6, 0xf5};

int main(int argc, const char* argv[]) {

char input[32];

gets(input); // lets just imagine this removing newlines

for (int i = 0; i < 32; i++) {

char a = input[i] ^ (input[i] << 2);

char b = (input[i] - i) ^ (input[i] + 20);

if ((a ^ b) != vals[i]) return 1;

}

return 0;

}

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 4 / 58

Solution: Constraint Solving

1. Define variables (usually input we control, in example char input[32])

2. Define domain of variables (usually printable characters)

3. Define constraints, i.e. first-order logic formulas with equality (figured out by
reversing)

4. Use a tool (such as z3) to solve for your variables

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 5 / 58

Time Complexity

How long does a solver theoretically take?

Running Time of Constraint Solvers

It is very similar to the SAT problem. It comes to no surprise, that it is an NP-Complete
Problem as well! Theoretically, it would take exponential time to solve!
In practice, we have a small enough search space and independent parts. Additionally,
specialized libraries have optimized code for solving these problems.

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 6 / 58

Time Complexity

How long does a solver theoretically take?

Running Time of Constraint Solvers

It is very similar to the SAT problem. It comes to no surprise, that it is an NP-Complete
Problem as well! Theoretically, it would take exponential time to solve!
In practice, we have a small enough search space and independent parts. Additionally,
specialized libraries have optimized code for solving these problems.

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 6 / 58

z3 Installation

▶ z3 does the heavy lifting of constraint solving for you

▶ usually you work with its python bindings, Z3Py

▶ installation should be easy via pip: pip3 install z3-solver

▶ do not install z3!

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 7 / 58

Constraint Solving
Defining Variables

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 8 / 58

Considerations

▶ similar to variables when programming, we need to specify the type
▶ usually, libraries support:

▶ integers
▶ real numbers
▶ even functions!

▶ however, computers use neither integers or real numbers, but rather machine
numbers
▶ often called BitVector
▶ allows you to specify how many bits your machine number should have

▶ usually, support for array types is either non existant or very limited
▶ this also applies to strings!

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 9 / 58

Working with Arrays and Strings

How can we define an array?

▶ we define a sequence of variables

▶ since we will be scripting with python anyways, we can use arrays in python

Should we do the same for strings?

▶ depends on the library, but usually yes (use python array of 8-bit BitVectors)

▶ for angr’s implementation, it is usually more effective to define an (8n)-BitVector
for a string of length n

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 10 / 58

Working with Arrays and Strings

How can we define an array?

▶ we define a sequence of variables

▶ since we will be scripting with python anyways, we can use arrays in python

Should we do the same for strings?

▶ depends on the library, but usually yes (use python array of 8-bit BitVectors)

▶ for angr’s implementation, it is usually more effective to define an (8n)-BitVector
for a string of length n

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 10 / 58

Working with Arrays and Strings

How can we define an array?

▶ we define a sequence of variables

▶ since we will be scripting with python anyways, we can use arrays in python

Should we do the same for strings?

▶ depends on the library, but usually yes (use python array of 8-bit BitVectors)

▶ for angr’s implementation, it is usually more effective to define an (8n)-BitVector
for a string of length n

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 10 / 58

Defining Variables with Z3Py

import z3

x = z3.Int('x') # all variables need a name

y = z3.Real('y')

flag = []

for i in range(32): # we know flag is at most 32 chars

flag.append(z3.BitVec(f'flag_{i}', 8)) # char is 8 bits

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 11 / 58

Constraint Solving
Defining the Domain

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 12 / 58

Considerations

▶ flag is always made out of printable characters:

▶ special characters: ' !"#\$%&\'()*+,-./', 32 (0x20) - 47 (0x2f) ,

':;<=>?@', 58 (0x3a) - 64 (0x40) ,

'[\]^_`', 91 (0x5b) - 96 (0x60) ,

'{|}~', 123 (0x7b) - 126 (0x7e)

▶ digits: '0123456789', 48 (0x30) - 57 (0x39)

▶ uppercase: 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 65 (0x41) - 90 (0x5a)

▶ lowercase: 'abcdefghijklmnopqrstuvwxyz', 97 (0x61) - 122 (0x7a)

▶ try keeping your domain as small as possible!

▶ but, if exact length is unknown, some characters might be 0!
▶ other types can be restricted like normal

▶ keep in mind - by default - numbers are signed!
▶ i.e. x < 100 allows x = −200

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 13 / 58

Defining Domains with Z3Py

▶ Z3Py has no real concept of domains, instead we just add constraints!

▶ for this, we need a Solver
▶ stores constraints on variables
▶ will be used to solve these constraints

▶ for now, we just add a few constraints

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 14 / 58

Defining Domains with Z3Py

s = z3.Solver() # create our solver

s.add(x < 100) # allows x = -200!

s.add(y < 100)

s.add(y > -100)

for c in flag:

s.add(c >= ' ') # space is first printable character

s.add(c <= '~') # tilde is last printable character

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 15 / 58

Constraint Solving
Defining Constraints

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 16 / 58

Considerations

▶ when using BitVectors, there is no need for manual masking (e.g. x & 0xff ,
ensuring only 8 bits used)

▶ usually, individual constraints are ANDed together
▶ if you need OR, create one constraint that is an OR of the individual constraints

▶ keep your constraint count as low as possible, while also ensuring constraints are as
“tight”” as possible

▶ the less possible values your variables can take, the faster solving is
▶ for example, constrain flag to flag format, i.e. flag[:8] == 'flagbot'

▶ the more constraints to fulfill, the slower solving is

▶ when working with BitVectors, pay attention to signedness of operation
▶ by default, operations are signed

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 17 / 58

Common Operations in Z3Py

▶ arithmetic operations (unsigned counterparts):

+, -, *, / (UDiv), % (URem)

▶ bitwise operations: |, &, ^, ~

▶ boolean operations:
Or(a, b, ...), And(a, b, ...), Not(a), Xor(a, b), Implies(a, b)

▶ comparison: <= (ULE), < (ULT), > (UGT), >= (UGE), ==

▶ shifts: <<, >> (LShR), RotateLeft, RotateRight

▶ concatenate multiple values (a will occupy bits starting at 0, b will follow after a,

etc.): Concat(a, b, ...)

▶ extract bits from BitVector: Extract(high, low, val)

See Official Z3Py Documentation for more!

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 18 / 58

https://z3prover.github.io/api/html/namespacez3py.html

Defining Constrains in Z3Py

for c in flag: # change our domain to allow 0

s.add(z3.Or(c >= ord(' '), c == 0), c <= ord('~'))

if one character is null, all following must be as well!

for i in range(len(flag)-1):

s.add(z3.Implies(flag[i] == 0, flag[i+1] == 0))

z = z3.Int('z') # find prime smaller than 100

s.add(z3.ForAll([z], z3.Implies(z3.And(1 < z, z < x), x % z != 0)), 1 < x)

s.add(z3.ForAll([z], z3.Implies(z3.And(1 < z, z < y),

z3.ToInt(y) % z != 0)), 1 < y)

vals = [0xe2, ..., 0xf5] # values extracted via reversing

for i, c in enumerate(flag): # add actual constraints

a = c ^ (c << 2)

b = (c - i) ^ (c + 20)

s.add(a ^ b == vals[i])

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 19 / 58

Constraint Solving
Solving for Constraints

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 20 / 58

Solving with Z3Py

Depends a lot on your library!

print(s.check()) # check() tries to find values satisfying all constraints

prints 'sat' if values found, 'unsat' if not

print(s.model()) # model() gives you the actual values

prints [flag_23 = 97,

...

flag_19 = 102]

print("".join([chr(s.model().eval(c).as_long()) for c in flag]))

prints 'flagbot{z3_makes_life_easy}\x00\x00\x00\x00\x00'

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 21 / 58

Angr

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 22 / 58

Installation

▶ mkvirtualenv angr

▶ pip install angr

OR

▶ docker run -it angr/angr

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 23 / 58

What are we talking about

▶ Claripy - a data abstraction library

▶ angr - a concolic execution engine

Around 100k lines of python

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 24 / 58

What are we talking about

▶ Claripy - a data abstraction library

▶ angr - a concolic execution engine

Around 100k lines of python

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 24 / 58

Developers

UC Santa Barbara + Arizona State University

For the DARPA Cyber Grand challenge

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 25 / 58

Developers

UC Santa Barbara + Arizona State University

For the DARPA Cyber Grand challenge

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 25 / 58

What does concolic mean

“Concolic testing (a portmanteau of concrete and symbolic) is a
hybrid software verification technique that performs symbolic
execution, a classical technique that treats program variables as
symbolic variables, along a concrete execution (testing on
particular inputs) path”

Wikipedia

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 26 / 58

What does concolic mean

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 27 / 58

What does concolic mean

Symbolic execution

For each basic block, calculate all possible
successors and all constraints necessary to
get to a given successor

Full control over the execution

Quite slow

Concrete execution

For each basic block, just execute it with
your own damn CPU

Same execution control you would have
with a debugger

Many orders of magnitude faster

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 28 / 58

Overview

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 29 / 58

Actually, it’s more like this

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 30 / 58

Documentation

Angr’s documentation is like every cool recent state-of-the-art infosec tool

it is basically non-existent

Your best bet is to have a look at what is pretending to be the official documentation
and a set of examples they provide on the angr website:

▶ https://docs.angr.io/

▶ https://docs.angr.io/examples

And here again, you will find yourself having to look at the source code to understand
how stuff works. Only this time it’s Python, not C, so maybe it’s a little better, I guess?
Not sure though, honestly.

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 31 / 58

https://docs.angr.io/
https://docs.angr.io/examples

Documentation

Angr’s documentation is like every cool recent state-of-the-art infosec tool

it is basically non-existent

Your best bet is to have a look at what is pretending to be the official documentation
and a set of examples they provide on the angr website:

▶ https://docs.angr.io/

▶ https://docs.angr.io/examples

And here again, you will find yourself having to look at the source code to understand
how stuff works. Only this time it’s Python, not C, so maybe it’s a little better, I guess?
Not sure though, honestly.

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 31 / 58

https://docs.angr.io/
https://docs.angr.io/examples

Documentation

Angr’s documentation is like every cool recent state-of-the-art infosec tool

it is basically non-existent

Your best bet is to have a look at what is pretending to be the official documentation
and a set of examples they provide on the angr website:

▶ https://docs.angr.io/

▶ https://docs.angr.io/examples

And here again, you will find yourself having to look at the source code to understand
how stuff works. Only this time it’s Python, not C, so maybe it’s a little better, I guess?
Not sure though, honestly.

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 31 / 58

https://docs.angr.io/
https://docs.angr.io/examples

Documentation

Angr’s documentation is like every cool recent state-of-the-art infosec tool

it is basically non-existent

Your best bet is to have a look at what is pretending to be the official documentation
and a set of examples they provide on the angr website:

▶ https://docs.angr.io/

▶ https://docs.angr.io/examples

And here again, you will find yourself having to look at the source code to understand
how stuff works. Only this time it’s Python, not C, so maybe it’s a little better, I guess?
Not sure though, honestly.

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 31 / 58

https://docs.angr.io/
https://docs.angr.io/examples

Let’s get our hands dirty

import angr

import claripy

project = angr.Project("./crackme") # load a binary

This alone will take from 3 to 10 seconds

If you think this is slow, oh boy, are you gonna change your mind

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 32 / 58

Let’s get our hands dirty

import angr

import claripy

project = angr.Project("./crackme")

flag = claripy.BVS("flag", 8*100) # create a symbolic value

first argument: name (does not really concern you)

second argument: size in BITS (so here we have 100 chars)

You can also use claripy.BVV() instead for a concrete (fixed) value

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 33 / 58

Let’s get our hands dirty

import angr

import claripy

project = angr.Project("./crackme")

flag = claripy.BVS("flag", 8*50)

state = project.factory.full_init_state(stdin=flag)

Here, we create an initial "state". There are many ways to do this:

- full_init_state : quickly go over loading libs and go to main

- entry_state : bare-bones state corresponding to binary entry point

- blank_state : void state. Set starting address yourself.

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 34 / 58

Let’s get our hands dirty

import angr

import claripy

project = angr.Project("./crackme")

flag = claripy.BVS("flag", 8*50)

state = project.factory.full_init_state(stdin=flag)

sm = project.factory.simulation_manager(state)

sm.explore(find=good_address, avoid=bad_address)

Now, go and try to find desirable states!

Arguments to 'find' and 'avoid' can be single addresses,

lists of addresses or predicates on states

A state can be in one of the following stashes:

found - active - avoid - unsat - errored - deadended - unconstrained

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 35 / 58

Let’s get our hands dirty

import angr

import claripy

project = angr.Project("./crackme")

flag = claripy.BVS("flag", 8*50)

state = project.factory.full_init_state(stdin=flag)

sm = project.factory.simulation_manager(state)

sm.explore(find=good_address, avoid=bad_address)

print (sm.found[0].solver.eval_upto(flag, 4, cast_to=bytes))

Having found one (or more?) "good" states, we tell z3 to solve the

constraints and give us up to 4 possible valid values for the

"flag" symbolic variable

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 36 / 58

Demo

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 37 / 58

Demo

Demo time!

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 38 / 58

Angr limitations

▶ Path explosion

▶ Single-threaded

▶ It cannot cheat complex algos (e.g. crypto)

▶ You actually need to reverse part of the binary

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 39 / 58

Tips and tricks

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 40 / 58

Trick of the trade no. 1

Use PyPy!

pypy -m ensurepip

pypy -m pip install angr

Depends on the case, but in my experience it gets you a 2x-8x speedup

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 41 / 58

Trick of the trade no. 1

Use PyPy!

pypy -m ensurepip

pypy -m pip install angr

Depends on the case, but in my experience it gets you a 2x-8x speedup

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 41 / 58

Trick of the trade no. 2

Give Unicorn a go!

state = project.factory.blank_state(add_options=angr.options.unicorn)

If you have to do a lot of concrete execution, this helps a lot

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 42 / 58

Trick of the trade no. 2

Give Unicorn a go!

state = project.factory.blank_state(add_options=angr.options.unicorn)

If you have to do a lot of concrete execution, this helps a lot

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 42 / 58

Trick of the trade no. 3

You can load Coredumps in angr!

proj = angr.Project("./coredump")

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 43 / 58

Trick of the trade no. 4

Symbolize Arbitrary memory!

flag = claripy.BVS("flag", 8*8)

state.memory.store(flag, 0x800000)

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 44 / 58

Trick of the trade no. 5

Keep track of Registers!

def lol(lsm):

print(lsm.active[0].regs.rip)

sm.explore(find=address, avoid=address, step_func=lol)

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 45 / 58

Trick of the trade no. 6

Use symbolic Arguments!

argv = [project.filename]

argv.append(sym_arg)

state = project.factory.entry_state(args=argv)

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 46 / 58

Trick of the trade no. 7

Impose your own Constraints!

flag = claripy.BVS("flag", 8*100)

for byte in flag.chop(8):

state.add_constraints(byte >= '\x20') # ' '

state.add_constraints(byte <= '\x7e') # '~'

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 47 / 58

Trick of the trade no. 8

Implement stuff Yourself!

class fixpid(angr.SimProcedure):

def run(self):

return 0x30

project.hook(0x4008cd, fixpid())

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 48 / 58

Trick of the trade no. 9

Tell angr’s warnings to Shut The Fuck Up!

state = project.factory.blank_state(

add_options={angr.options.ZERO_FILL_UNCONSTRAINED_MEMORY,

angr.options.ZERO_FILL_UNCONSTRAINED_REGISTERS}))

▶ Actually useful in some cases, not just to make the output less annoying!

▶ Usually, we can expect memory and registers to be zeroed initially. Being certain
about it helps prevent path explosion (and generally makes things easier for angr)

▶ Some library functions that initialize memory to zero, such as
explicit_bzero() , aren’t recognized by angr at the time of writing

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 49 / 58

Trick of the trade no. 9

Tell angr’s warnings to Shut The Fuck Up!

state = project.factory.blank_state(

add_options={angr.options.ZERO_FILL_UNCONSTRAINED_MEMORY,

angr.options.ZERO_FILL_UNCONSTRAINED_REGISTERS}))

▶ Actually useful in some cases, not just to make the output less annoying!

▶ Usually, we can expect memory and registers to be zeroed initially. Being certain
about it helps prevent path explosion (and generally makes things easier for angr)

▶ Some library functions that initialize memory to zero, such as
explicit_bzero() , aren’t recognized by angr at the time of writing

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 49 / 58

Trick of the trade no. 9

Tell angr’s warnings to Shut The Fuck Up!

state = project.factory.blank_state(

add_options={angr.options.ZERO_FILL_UNCONSTRAINED_MEMORY,

angr.options.ZERO_FILL_UNCONSTRAINED_REGISTERS}))

▶ Actually useful in some cases, not just to make the output less annoying!

▶ Usually, we can expect memory and registers to be zeroed initially. Being certain
about it helps prevent path explosion (and generally makes things easier for angr)

▶ Some library functions that initialize memory to zero, such as
explicit_bzero() , aren’t recognized by angr at the time of writing

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 49 / 58

Trick of the trade no. 9

Tell angr’s warnings to Shut The Fuck Up!

state = project.factory.blank_state(

add_options={angr.options.ZERO_FILL_UNCONSTRAINED_MEMORY,

angr.options.ZERO_FILL_UNCONSTRAINED_REGISTERS}))

▶ Actually useful in some cases, not just to make the output less annoying!

▶ Usually, we can expect memory and registers to be zeroed initially. Being certain
about it helps prevent path explosion (and generally makes things easier for angr)

▶ Some library functions that initialize memory to zero, such as
explicit_bzero() , aren’t recognized by angr at the time of writing

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 49 / 58

Trick of the trade no. 10

Be Lazy!

state = ...

state.options |= {LAZY_SOLVES}

you can also use the 'add_options' argument when creating the state

▶ By default, angr runs z3 to check states for satisfiability at every simulation step.
▶ Might be good to avoid explosion by quickly throwing out impossible states
▶ but can be super slow

▶ angr.sim_options.LAZY_SOLVES defers checking satisfiability

“until absolutely necessary” [https://docs.angr.io/appendix/options]

▶ can speed up execution by 10x, maybe even more!
▶ works well if a “good” path (along which to gather constraints) is easy to find and

“bad” branches are easy to avoid
▶ probably a bad idea if control flow is obfuscated (branches that are never taken, etc.)

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 50 / 58

Trick of the trade no. 10

Be Lazy!

state = ...

state.options |= {LAZY_SOLVES}

you can also use the 'add_options' argument when creating the state

▶ By default, angr runs z3 to check states for satisfiability at every simulation step.
▶ Might be good to avoid explosion by quickly throwing out impossible states
▶ but can be super slow

▶ angr.sim_options.LAZY_SOLVES defers checking satisfiability

“until absolutely necessary” [https://docs.angr.io/appendix/options]

▶ can speed up execution by 10x, maybe even more!
▶ works well if a “good” path (along which to gather constraints) is easy to find and

“bad” branches are easy to avoid
▶ probably a bad idea if control flow is obfuscated (branches that are never taken, etc.)

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 50 / 58

Trick of the trade no. 10

Be Lazy!

state = ...

state.options |= {LAZY_SOLVES}

you can also use the 'add_options' argument when creating the state

▶ By default, angr runs z3 to check states for satisfiability at every simulation step.
▶ Might be good to avoid explosion by quickly throwing out impossible states
▶ but can be super slow

▶ angr.sim_options.LAZY_SOLVES defers checking satisfiability

“until absolutely necessary” [https://docs.angr.io/appendix/options]

▶ can speed up execution by 10x, maybe even more!

▶ works well if a “good” path (along which to gather constraints) is easy to find and

“bad” branches are easy to avoid
▶ probably a bad idea if control flow is obfuscated (branches that are never taken, etc.)

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 50 / 58

Trick of the trade no. 10

Be Lazy!

state = ...

state.options |= {LAZY_SOLVES}

you can also use the 'add_options' argument when creating the state

▶ By default, angr runs z3 to check states for satisfiability at every simulation step.
▶ Might be good to avoid explosion by quickly throwing out impossible states
▶ but can be super slow

▶ angr.sim_options.LAZY_SOLVES defers checking satisfiability

“until absolutely necessary” [https://docs.angr.io/appendix/options]

▶ can speed up execution by 10x, maybe even more!
▶ works well if a “good” path (along which to gather constraints) is easy to find and

“bad” branches are easy to avoid
▶ probably a bad idea if control flow is obfuscated (branches that are never taken, etc.)

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 50 / 58

Troubleshooting

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 51 / 58

Dealing with Symbolic Strings

▶ angr’s SimProcedures of string functions such as strlen assume symbolic
strings to be at most 60 bytes long by default

▶ If a string needs to be longer than that, or you specifically constrain it to be longer than 60,

you get an unsatisfiable state :(

▶ Easy fix:

buf_size = 128

flag = claripy.BVS("flag", 8*buf_size)

state = ...

state.libc.buf_symbolic_bytes = buf_size

state.libc.max_str_len = buf_size

might want to use max() instead

to make sure you're not making anything smaller

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 52 / 58

Dealing with Symbolic Strings

▶ angr’s SimProcedures of string functions such as strlen assume symbolic
strings to be at most 60 bytes long by default

▶ If a string needs to be longer than that, or you specifically constrain it to be longer than 60,

you get an unsatisfiable state :(

▶ Easy fix:

buf_size = 128

flag = claripy.BVS("flag", 8*buf_size)

state = ...

state.libc.buf_symbolic_bytes = buf_size

state.libc.max_str_len = buf_size

might want to use max() instead

to make sure you're not making anything smaller

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 52 / 58

Unsatisfiable States
▶ A state becomes unsatisfiable when its constraints contradict each other

▶ informally: “this cannot possibly happen on a machine”

▶ constraints may be path constraints derived from control flow, or ones you manually
added

void foo(int x) {

if (x == 42) {

puts("forty-two");

if (x == 43) {

// states here are always unsat

// (unless you manually mess with them)

puts("this is fine");

puts("absolutely no bitflips from cosmic radiation");

system("sudo rm -rf /");

}

}

}

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 53 / 58

Unsatisfiable States
▶ A state becomes unsatisfiable when its constraints contradict each other

▶ informally: “this cannot possibly happen on a machine”
▶ constraints may be path constraints derived from control flow, or ones you manually

added

void foo(int x) {

if (x == 42) {

puts("forty-two");

if (x == 43) {

// states here are always unsat

// (unless you manually mess with them)

puts("this is fine");

puts("absolutely no bitflips from cosmic radiation");

system("sudo rm -rf /");

}

}

}

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 53 / 58

Debugging Unsatisfiable States
▶ You can access a state’s constraints (e.g. in a Python debugger) using

state.solver.constraints

▶ but that may be a lot of constraints, so which ones are actually wrong?

▶ unsat_core() gives you a subset of contradicting constraints
▶ actually how I found out about the issue with symbolic string lengths from slide 52
▶ need to enable an option to use:

state = ...

state.options |= {angr.sim_options.CONSTRAINT_TRACKING_IN_SOLVER}

you can also use 'add_options'

sm = project.factory.simulation_manager(state)

sm.explore(...)

assume you have an unsat state that *should* be satisfiable

print("one of these is false: ", sm.unsat[0].solver.unsat_core())

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 54 / 58

Debugging Unsatisfiable States
▶ You can access a state’s constraints (e.g. in a Python debugger) using

state.solver.constraints
▶ but that may be a lot of constraints, so which ones are actually wrong?

▶ unsat_core() gives you a subset of contradicting constraints
▶ actually how I found out about the issue with symbolic string lengths from slide 52
▶ need to enable an option to use:

state = ...

state.options |= {angr.sim_options.CONSTRAINT_TRACKING_IN_SOLVER}

you can also use 'add_options'

sm = project.factory.simulation_manager(state)

sm.explore(...)

assume you have an unsat state that *should* be satisfiable

print("one of these is false: ", sm.unsat[0].solver.unsat_core())

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 54 / 58

Debugging Unsatisfiable States
▶ You can access a state’s constraints (e.g. in a Python debugger) using

state.solver.constraints
▶ but that may be a lot of constraints, so which ones are actually wrong?

▶ unsat_core() gives you a subset of contradicting constraints
▶ actually how I found out about the issue with symbolic string lengths from slide 52

▶ need to enable an option to use:

state = ...

state.options |= {angr.sim_options.CONSTRAINT_TRACKING_IN_SOLVER}

you can also use 'add_options'

sm = project.factory.simulation_manager(state)

sm.explore(...)

assume you have an unsat state that *should* be satisfiable

print("one of these is false: ", sm.unsat[0].solver.unsat_core())

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 54 / 58

Debugging Unsatisfiable States
▶ You can access a state’s constraints (e.g. in a Python debugger) using

state.solver.constraints
▶ but that may be a lot of constraints, so which ones are actually wrong?

▶ unsat_core() gives you a subset of contradicting constraints
▶ actually how I found out about the issue with symbolic string lengths from slide 52
▶ need to enable an option to use:

state = ...

state.options |= {angr.sim_options.CONSTRAINT_TRACKING_IN_SOLVER}

you can also use 'add_options'

sm = project.factory.simulation_manager(state)

sm.explore(...)

assume you have an unsat state that *should* be satisfiable

print("one of these is false: ", sm.unsat[0].solver.unsat_core())

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 54 / 58

Other tools

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 55 / 58

Other tools

▶ Triton

▶ KLEE

▶ S2E

▶ Less suitable for a quick hack

▶ More stable; more documented

▶ Actually used by many companies → will probably be supported for a long time

Exception: Manticore

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 56 / 58

Other tools

▶ Triton

▶ KLEE

▶ S2E

▶ Less suitable for a quick hack

▶ More stable; more documented

▶ Actually used by many companies → will probably be supported for a long time

Exception: Manticore

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 56 / 58

Challenge

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 57 / 58

Challenge

Angry bomb

This one’s easy - it’s the famous reversing bomb, 6 stages (or more?) of pure fun
disarming. But wait, it’s with a twist! Now you actually need to solve each phase with
angr. No manual reversing allowed!
Hints: Whenever you feel really angry – scream, it will help. Source: am Italian
Files: bomb.zip
Author: CMU Labs

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 58 / 58

https://cdn.vis.ethz.ch/ctf/chals/bomb.zip

	Constraint Solving
	General
	Defining Variables
	Defining the Domain
	Defining Constraints
	Solving for Constraints

	Angr
	Demo
	Tips and tricks
	Troubleshooting
	Other tools
	Challenge

