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Constraint Solving
General
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Problem: Annyoing Reverse Challenge
▶ Already reversed good amount of challenge

▶ Now you know what conditions every byte of flag must fulfill

char vals[] = {0xe2, 0x37, 0xcf, 0xe4, 0xc2, 0x3a, 0x42, 0x6c, 0x6e, 0x92,

0x5, 0x3a, 0xc5, 0xe6, 0xdf, 0x5c, 0x1f, 0x7, 0xe7, 0xd7, 0xd9, 0x1a,

0xc7, 0xda, 0x63, 0x70, 0x7b, 0xf1, 0xf0, 0xf7, 0xf6, 0xf5};

int main(int argc, const char* argv[]) {

char input[32];

gets(input); // lets just imagine this removing newlines

for (int i = 0; i < 32; i++) {

char a = input[i] ^ (input[i] << 2);

char b = (input[i] - i) ^ (input[i] + 20);

if ((a ^ b) != vals[i]) return 1;

}

return 0;

}
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Solution: Constraint Solving

1. Define variables (usually input we control, in example char input[32] )

2. Define domain of variables (usually printable characters)

3. Define constraints, i.e. first-order logic formulas with equality (figured out by
reversing)

4. Use a tool (such as z3) to solve for your variables
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Time Complexity

How long does a solver theoretically take?

Running Time of Constraint Solvers

It is very similar to the SAT problem. It comes to no surprise, that it is an NP-Complete
Problem as well! Theoretically, it would take exponential time to solve!
In practice, we have a small enough search space and independent parts. Additionally,
specialized libraries have optimized code for solving these problems.
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z3 Installation

▶ z3 does the heavy lifting of constraint solving for you

▶ usually you work with its python bindings, Z3Py

▶ installation should be easy via pip: pip3 install z3-solver

▶ do not install z3!
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Constraint Solving
Defining Variables
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Considerations

▶ similar to variables when programming, we need to specify the type
▶ usually, libraries support:

▶ integers
▶ real numbers
▶ even functions!

▶ however, computers use neither integers or real numbers, but rather machine
numbers
▶ often called BitVector
▶ allows you to specify how many bits your machine number should have

▶ usually, support for array types is either non existant or very limited
▶ this also applies to strings!

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 9 / 58



Working with Arrays and Strings

How can we define an array?

▶ we define a sequence of variables

▶ since we will be scripting with python anyways, we can use arrays in python

Should we do the same for strings?

▶ depends on the library, but usually yes (use python array of 8-bit BitVectors)

▶ for angr’s implementation, it is usually more effective to define an (8n)-BitVector
for a string of length n
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Defining Variables with Z3Py

import z3

x = z3.Int('x') # all variables need a name

y = z3.Real('y')

flag = []

for i in range(32): # we know flag is at most 32 chars

flag.append(z3.BitVec(f'flag_{i}', 8)) # char is 8 bits

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 11 / 58



Constraint Solving
Defining the Domain
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Considerations

▶ flag is always made out of printable characters:

▶ special characters: ' !"#\$%&\'()*+,-./', 32 (0x20) - 47 (0x2f) ,

':;<=>?@', 58 (0x3a) - 64 (0x40) ,

'[\]^_`', 91 (0x5b) - 96 (0x60) ,

'{|}~', 123 (0x7b) - 126 (0x7e)

▶ digits: '0123456789', 48 (0x30) - 57 (0x39)

▶ uppercase: 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 65 (0x41) - 90 (0x5a)

▶ lowercase: 'abcdefghijklmnopqrstuvwxyz', 97 (0x61) - 122 (0x7a)

▶ try keeping your domain as small as possible!

▶ but, if exact length is unknown, some characters might be 0!
▶ other types can be restricted like normal

▶ keep in mind - by default - numbers are signed!
▶ i.e. x < 100 allows x = −200
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Defining Domains with Z3Py

▶ Z3Py has no real concept of domains, instead we just add constraints!

▶ for this, we need a Solver
▶ stores constraints on variables
▶ will be used to solve these constraints

▶ for now, we just add a few constraints
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Defining Domains with Z3Py

s = z3.Solver() # create our solver

s.add(x < 100) # allows x = -200!

s.add(y < 100)

s.add(y > -100)

for c in flag:

s.add(c >= ' ') # space is first printable character

s.add(c <= '~') # tilde is last printable character
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Constraint Solving
Defining Constraints
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Considerations

▶ when using BitVectors, there is no need for manual masking (e.g. x & 0xff ,
ensuring only 8 bits used)

▶ usually, individual constraints are ANDed together
▶ if you need OR, create one constraint that is an OR of the individual constraints

▶ keep your constraint count as low as possible, while also ensuring constraints are as
“tight”” as possible

▶ the less possible values your variables can take, the faster solving is
▶ for example, constrain flag to flag format, i.e. flag[:8] == 'flagbot'

▶ the more constraints to fulfill, the slower solving is

▶ when working with BitVectors, pay attention to signedness of operation
▶ by default, operations are signed
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Common Operations in Z3Py

▶ arithmetic operations (unsigned counterparts):

+, -, *, / (UDiv), % (URem)

▶ bitwise operations: |, &, ^, ~

▶ boolean operations:
Or(a, b, ...), And(a, b, ...), Not(a), Xor(a, b), Implies(a, b)

▶ comparison: <= (ULE), < (ULT), > (UGT), >= (UGE), ==

▶ shifts: <<, >> (LShR), RotateLeft, RotateRight

▶ concatenate multiple values (a will occupy bits starting at 0, b will follow after a,

etc.): Concat(a, b, ...)

▶ extract bits from BitVector: Extract(high, low, val)

See Official Z3Py Documentation for more!
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Defining Constrains in Z3Py

for c in flag: # change our domain to allow 0

s.add(z3.Or(c >= ord(' '), c == 0), c <= ord('~'))

# if one character is null, all following must be as well!

for i in range(len(flag)-1):

s.add(z3.Implies(flag[i] == 0, flag[i+1] == 0))

z = z3.Int('z') # find prime smaller than 100

s.add(z3.ForAll([z], z3.Implies(z3.And(1 < z, z < x), x % z != 0)), 1 < x)

s.add(z3.ForAll([z], z3.Implies(z3.And(1 < z, z < y),

z3.ToInt(y) % z != 0)), 1 < y)

vals = [0xe2, ..., 0xf5] # values extracted via reversing

for i, c in enumerate(flag): # add actual constraints

a = c ^ (c << 2)

b = (c - i) ^ (c + 20)

s.add(a ^ b == vals[i])
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Constraint Solving
Solving for Constraints
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Solving with Z3Py

Depends a lot on your library!

print(s.check()) # check() tries to find values satisfying all constraints

# prints 'sat' if values found, 'unsat' if not

print(s.model()) # model() gives you the actual values

# prints [flag_23 = 97,

# ...

# flag_19 = 102]

print("".join([chr(s.model().eval(c).as_long()) for c in flag]))

# prints 'flagbot{z3_makes_life_easy}\x00\x00\x00\x00\x00'
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Angr
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Installation

▶ mkvirtualenv angr

▶ pip install angr

OR

▶ docker run -it angr/angr
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What are we talking about

▶ Claripy - a data abstraction library

▶ angr - a concolic execution engine

Around 100k lines of python
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Developers

UC Santa Barbara + Arizona State University

For the DARPA Cyber Grand challenge

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 25 / 58



Developers

UC Santa Barbara + Arizona State University

For the DARPA Cyber Grand challenge

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 25 / 58



What does concolic mean

“Concolic testing (a portmanteau of concrete and symbolic) is a
hybrid software verification technique that performs symbolic
execution, a classical technique that treats program variables as
symbolic variables, along a concrete execution (testing on
particular inputs) path”

Wikipedia
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What does concolic mean
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What does concolic mean

Symbolic execution

For each basic block, calculate all possible
successors and all constraints necessary to
get to a given successor

Full control over the execution

Quite slow

Concrete execution

For each basic block, just execute it with
your own damn CPU

Same execution control you would have
with a debugger

Many orders of magnitude faster

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 28 / 58



Overview
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Actually, it’s more like this
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Documentation

Angr’s documentation is like every cool recent state-of-the-art infosec tool

it is basically non-existent

Your best bet is to have a look at what is pretending to be the official documentation
and a set of examples they provide on the angr website:

▶ https://docs.angr.io/

▶ https://docs.angr.io/examples

And here again, you will find yourself having to look at the source code to understand
how stuff works. Only this time it’s Python, not C, so maybe it’s a little better, I guess?
Not sure though, honestly.
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Let’s get our hands dirty

import angr

import claripy

project = angr.Project("./crackme") # load a binary

# This alone will take from 3 to 10 seconds

# If you think this is slow, oh boy, are you gonna change your mind
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Let’s get our hands dirty

import angr

import claripy

project = angr.Project("./crackme")

flag = claripy.BVS("flag", 8*100) # create a symbolic value

# first argument: name (does not really concern you)

# second argument: size in BITS (so here we have 100 chars)

# You can also use claripy.BVV() instead for a concrete (fixed) value
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Let’s get our hands dirty

import angr

import claripy

project = angr.Project("./crackme")

flag = claripy.BVS("flag", 8*50)

state = project.factory.full_init_state(stdin=flag)

# Here, we create an initial "state". There are many ways to do this:

# - full_init_state : quickly go over loading libs and go to main

# - entry_state : bare-bones state corresponding to binary entry point

# - blank_state : void state. Set starting address yourself.
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Let’s get our hands dirty

import angr

import claripy

project = angr.Project("./crackme")

flag = claripy.BVS("flag", 8*50)

state = project.factory.full_init_state(stdin=flag)

sm = project.factory.simulation_manager(state)

sm.explore(find=good_address, avoid=bad_address)

# Now, go and try to find desirable states!

# Arguments to 'find' and 'avoid' can be single addresses,

# lists of addresses or predicates on states

# A state can be in one of the following stashes:

# found - active - avoid - unsat - errored - deadended - unconstrained
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Let’s get our hands dirty

import angr

import claripy

project = angr.Project("./crackme")

flag = claripy.BVS("flag", 8*50)

state = project.factory.full_init_state(stdin=flag)

sm = project.factory.simulation_manager(state)

sm.explore(find=good_address, avoid=bad_address)

print (sm.found[0].solver.eval_upto(flag, 4, cast_to=bytes))

# Having found one (or more?) "good" states, we tell z3 to solve the

# constraints and give us up to 4 possible valid values for the

# "flag" symbolic variable
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Demo
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Demo

Demo time!
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Angr limitations

▶ Path explosion

▶ Single-threaded

▶ It cannot cheat complex algos (e.g. crypto)

▶ You actually need to reverse part of the binary
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Tips and tricks

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 40 / 58



Trick of the trade no. 1

Use PyPy!

pypy -m ensurepip

pypy -m pip install angr

Depends on the case, but in my experience it gets you a 2x-8x speedup
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Trick of the trade no. 2

Give Unicorn a go!

state = project.factory.blank_state(add_options=angr.options.unicorn)

If you have to do a lot of concrete execution, this helps a lot
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Trick of the trade no. 3

You can load Coredumps in angr!

proj = angr.Project("./coredump")
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Trick of the trade no. 4

Symbolize Arbitrary memory!

flag = claripy.BVS("flag", 8*8)

state.memory.store(flag, 0x800000)
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Trick of the trade no. 5

Keep track of Registers!

def lol(lsm):

print(lsm.active[0].regs.rip)

sm.explore(find=address, avoid=address, step_func=lol)
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Trick of the trade no. 6

Use symbolic Arguments!

argv = [project.filename]

argv.append(sym_arg)

state = project.factory.entry_state(args=argv)
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Trick of the trade no. 7

Impose your own Constraints!

flag = claripy.BVS("flag", 8*100)

for byte in flag.chop(8):

state.add_constraints(byte >= '\x20') # ' '

state.add_constraints(byte <= '\x7e') # '~'
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Trick of the trade no. 8

Implement stuff Yourself!

class fixpid(angr.SimProcedure):

def run(self):

return 0x30

project.hook(0x4008cd, fixpid())
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Trick of the trade no. 9

Tell angr’s warnings to Shut The Fuck Up!

state = project.factory.blank_state(

add_options={angr.options.ZERO_FILL_UNCONSTRAINED_MEMORY,

angr.options.ZERO_FILL_UNCONSTRAINED_REGISTERS}))

▶ Actually useful in some cases, not just to make the output less annoying!

▶ Usually, we can expect memory and registers to be zeroed initially. Being certain
about it helps prevent path explosion (and generally makes things easier for angr)

▶ Some library functions that initialize memory to zero, such as
explicit_bzero() , aren’t recognized by angr at the time of writing
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Trick of the trade no. 10

Be Lazy!

state = ...

state.options |= {LAZY_SOLVES}

# you can also use the 'add_options' argument when creating the state

▶ By default, angr runs z3 to check states for satisfiability at every simulation step.
▶ Might be good to avoid explosion by quickly throwing out impossible states
▶ but can be super slow

▶ angr.sim_options.LAZY_SOLVES defers checking satisfiability

“until absolutely necessary” [https://docs.angr.io/appendix/options]

▶ can speed up execution by 10x, maybe even more!
▶ works well if a “good” path (along which to gather constraints) is easy to find and

“bad” branches are easy to avoid
▶ probably a bad idea if control flow is obfuscated (branches that are never taken, etc.)
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Troubleshooting

Luca Di Bartolomeo, Leonardo Galli November 7, 2024 51 / 58



Dealing with Symbolic Strings

▶ angr’s SimProcedures of string functions such as strlen assume symbolic
strings to be at most 60 bytes long by default

▶ If a string needs to be longer than that, or you specifically constrain it to be longer than 60,

you get an unsatisfiable state :(

▶ Easy fix:

buf_size = 128

flag = claripy.BVS("flag", 8*buf_size)

state = ...

state.libc.buf_symbolic_bytes = buf_size

state.libc.max_str_len = buf_size

# might want to use max() instead

# to make sure you're not making anything smaller
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Unsatisfiable States
▶ A state becomes unsatisfiable when its constraints contradict each other

▶ informally: “this cannot possibly happen on a machine”

▶ constraints may be path constraints derived from control flow, or ones you manually
added

void foo(int x) {

if (x == 42) {

puts("forty-two");

if (x == 43) {

// states here are always unsat

// (unless you manually mess with them)

puts("this is fine");

puts("absolutely no bitflips from cosmic radiation");

system("sudo rm -rf /");

}

}

}
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Debugging Unsatisfiable States
▶ You can access a state’s constraints (e.g. in a Python debugger) using

state.solver.constraints

▶ but that may be a lot of constraints, so which ones are actually wrong?

▶ unsat_core() gives you a subset of contradicting constraints
▶ actually how I found out about the issue with symbolic string lengths from slide 52
▶ need to enable an option to use:

state = ...

state.options |= {angr.sim_options.CONSTRAINT_TRACKING_IN_SOLVER}

# you can also use 'add_options'

sm = project.factory.simulation_manager(state)

sm.explore(...)

# assume you have an unsat state that *should* be satisfiable

print("one of these is false: ", sm.unsat[0].solver.unsat_core())
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Other tools
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Other tools

▶ Triton

▶ KLEE

▶ S2E

▶ Less suitable for a quick hack

▶ More stable; more documented

▶ Actually used by many companies → will probably be supported for a long time

Exception: Manticore
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Challenge
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Challenge

Angry bomb

This one’s easy - it’s the famous reversing bomb, 6 stages (or more?) of pure fun
disarming. But wait, it’s with a twist! Now you actually need to solve each phase with
angr. No manual reversing allowed!
Hints: Whenever you feel really angry – scream, it will help. Source: am Italian
Files: bomb.zip
Author: CMU Labs
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https://cdn.vis.ethz.ch/ctf/chals/bomb.zip
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